IBI White Paper: Pyrolysis and Gasification of Biosolids to Produce Biochar
ثبت نشده
چکیده
Introduction The need to dispose of human-generated waste streams is growing in line with the expansion of urban population centers. This is particularly true for the byproducts of wastewater treatment. According to the US EPA, there are over 7 million dry tons of biosolids (stabilized sewage sludge) produced per year in the US. In 2004, 49% of biosolids were beneficially used—primarily for agricultural land application—with most of the remainder either landfilled or incinerated (NEBRA 2007). Because biosolids have a high nutrient content, land application as a fertilizer substitute is an appealing management strategy. Yet concerns around nutrient run-off and contamination of waterways have led to tighter environmental controls making land application increasingly tenuous. Promising alternate management strategies exist but are in early stages of development. Pyrolysis and gasification—a continuum of thermochemical conversion processes—have been shown to minimize harmful air emissions, while producing energy and biochar, a carbon-rich solid material with beneficial soil health properties. This white paper briefly explores experiences of pyrolysis and gasification of biosolids as a waste management strategy, and research into biosolids biochar (BSB) as a soil amendment.
منابع مشابه
Different Pathways to Integrate Anaerobic Digestion and Thermochemical Processes: Moving Toward the Circular Economy Concept
As one of the most environmentally friendly and cost-effective method, anaerobic digestion (AD) has been widely studied and developed as a conventional technology to degrade biodegradable materials and produce biogas simultaneously. Various substrate sources are used in this process such as organic fraction of municipal solid waste (MSW), waste activated sludge (WAS), animal manures, agro-indus...
متن کاملFate of Micropollutants During Pyrolysis of Biosolids
FATE OF MICROPOLLUTANTS DURING PYROLYSIS OF BIOSOLIDS Approximately 250 tons of organic micropollutants, including pharmaceuticals, antimicrobials, and hormones, are discharged to the environment during land application of wastewater biosolids. Reusing wastewater biosolids is vital to the sustainability of wastewater treatment, but current treatment processes do not remove micropollutants from ...
متن کاملBiochar from Pyrolysis of Biosolids for Nutrient Adsorption and Turfgrass Cultivation.
At water resource recovery facilities, nutrient removal is often required and energy recovery is an ever-increasing goal. Pyrolysis may be a sustainable process for handling wastewater biosolids because energy can be recovered in the py-gas and py-oil. Additionally, the biochar produced has value as a soil conditioner. The objective of this work was to determine if biochar could be used to adso...
متن کاملHydrogen-Rich Syngas Production from Gasification and Pyrolysis of Solar Dried Sewage Sludge: Experimental and Modeling Investigations
Solar dried sewage sludge (SS) conversion by pyrolysis and gasification processes has been performed, separately, using two laboratory-scale reactors, a fixed-bed pyrolyzer and a downdraft gasifier, to produce mainly hydrogen-rich syngas. Prior to SS conversion, solar drying has been conducted in order to reduce moisture content (up to 10%). SS characterization reveals that these biosolids coul...
متن کاملSpeciation of Sulfur in Biochar Produced from Pyrolysis and Gasification of Oak and Corn Stover
The effects of feedstock type and biomass conversion conditions on the speciation of sulfur in biochars are not well-known. In this study, the sulfur content and speciation in biochars generated from pyrolysis and gasification of oak and corn stover were determined. We found the primary determinant of the total sulfur content of biomass to be the feedstock from which the biochar is generated, w...
متن کامل